Crystal structures of the short-chain flavin reductase HpaC from Sulfolobus tokodaii strain 7 in its three states: NAD(P)(+)(-)free, NAD(+)(-)bound, and NADP(+)(-)bound.
نویسندگان
چکیده
4-Hydroxyphenylacetate (4-HPA) is oxidized as an energy source by two component enzymes, the large component (HpaB) and the small component (HpaC). HpaB is a 4-HPA monooxygenase that utilizes FADH(2) supplied by a flavin reductase HpaC. We determined the crystal structure of HpaC (ST0723) from the aerobic thermoacidophilic crenarchaeon Sulfolobus tokodaii strain 7 in its three states [NAD(P)(+)-free, NAD(+)-bound, and NADP(+)-bound]. HpaC exists as a homodimer, and each monomer was found to contain an FMN. HpaC preferred FMN to FAD because there was not enough space to accommodate the AMP moiety of FAD in its flavin-binding site. The most striking difference between the NAD(P)(+)-free and the NAD(+)/NADP(+)-bound structures was observed in the N-terminal helix. The N-terminal helices in the NAD(+)/NADP(+)-bound structures rotated ca. 20 degrees relative to the NAD(P)(+)-free structure. The bound NAD(+) has a compact folded conformation with nearly parallel stacking rings of nicotinamide and adenine. The nicotinamide of NAD(+) stacked the isoalloxazine ring of FMN so that NADH could directly transfer hydride. The bound NADP(+) also had a compact conformation but was bound in a reverse direction, which was not suitable for hydride transfer.
منابع مشابه
Unusual folded conformation of nicotinamide adenine dinucleotide bound to flavin reductase P.
The 2.1 A resolution crystal structure of flavin reductase P with the inhibitor nicotinamide adenine dinucleotide (NAD) bound in the active site has been determined. NAD adopts a novel, folded conformation in which the nicotinamide and adenine rings stack in parallel with an inter-ring distance of 3.6 A. The pyrophosphate binds next to the flavin cofactor isoalloxazine, while the stacked nicoti...
متن کاملReaction of the NAD(P)H:flavin oxidoreductase from Escherichia coli with NADPH and riboflavin: identification of intermediates.
Flavin reductase catalyzes the reduction of free flavins by NAD(P)H. As isolated, Escherichia coli flavin reductase does not contain any flavin prosthetic group but accommodates both the reduced pyridine nucleotide and the flavin substrate in a ternary complex prior to oxidoreduction. The reduction of riboflavin by NADPH catalyzed by flavin reductase has been studied by static and rapid kinetic...
متن کاملCrystal structures of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus and its complex with NADP+.
BACKGROUND Studies performed within the last decade have indicated that microbial reduction of Fe(III) to Fe(II) is a biologically significant process. The ferric reductase (FeR) from Archaeoglobus fulgidus is the first reported archaeal ferric reductase and it catalyzes the flavin-mediated reduction of ferric iron complexes using NAD(P)H as the electron donor. Based on its catalytic activity, ...
متن کاملCoordinated production and utilization of FADH2 by NAD(P)H-flavin oxidoreductase and 4-hydroxyphenylacetate 3-monooxygenase.
4-Hydroxyphenylacetate (4HPA) 3-monooxygenase (HpaB) is a reduced flavin adenine dinucleotide (FADH(2)) utilizing monooxygenase. Its cosubstrate, FADH(2), is supplied by HpaC, an NAD(P)H-flavin oxidoreductase. Because HpaB is the first enzyme for 4HPA metabolism, FADH(2) production and utilization become a major metabolic event when Escherichia coli W grows on 4HPA. An important question is how...
متن کاملDissociation of FAD from the NAD(P)H-Nitrate Reductase Complex from Ankistrodesmus braunii and Role of Flavin in Catalysis
Flavin-Containing Enzyme, Nitrate Reductase, Ankistrodesmus braunii Ankistrodesmus braunii NAD(P)H-nitrate reductase is a complex hemoflavomolybdoprotein composed by eight similar subunits. The flavin prosthetic group, identified as FAD, is essential for the NAD(P)H-dependent activities of the complex, and is located before the heme chromophore in the enzyme electron transport chain from reduce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 45 16 شماره
صفحات -
تاریخ انتشار 2006